4.3 Article

Selective CO2 and H-2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 41, 页码 9073-9080

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm01125h

关键词

-

资金

  1. CSIR [NWP0022-H]
  2. DST [SR/S1/1C-22/2009]

向作者/读者索取更多资源

A rare porous magnesium-based metal-organic framework, Mg-MOF-1 [Mg(3,5-PDC)(H2O)], was synthesized solvothermally in DMF. Structural determination by X-ray single-crystal diffraction technique reveals that this chiral MOF (space group P6(1)22) is constructed by helical assembly of Mg2+ ions with achiral 3,5-pyridine dicarboxylates and coordinating water molecules, to form a three-dimensional framework with parallel hexagonal channels. The structural detail of its 0D analogue Mg-MOF-2 [Mg(2,4-PDC)(H2O)(3)] has been discussed to show how subtle variation in the ligand architecture changes the resulting structure from 0D to 3D. Mg-MOF-1 remains robust and porous upon evacuation of the coordinating water molecules. This is the first report of a chiral hexagonal Mg-MOF synthesized from an achiral organic building unit. Open Mg metal sites show selective hydrogen (H-2) adsorption (ca. 0.8 wt% at 77 K) and carbon dioxide (CO2) uptake (ca. 0.7 mmol g(-1) at 298 K) over nitrogen at 1 atm. Ab initio quantum chemical calculation of adsorption energies and possible adsorption sites of hydrogen molecules are also reported.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据