4.3 Article

Capture/release ability of thermo-responsive polymer particles

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 17, 页码 3496-3501

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b922972h

关键词

-

资金

  1. Institute of Paper Science and Technology (IPST) at Georgia Tech

向作者/读者索取更多资源

Strain engineering was used to make polymer particles that are able to reversibly alter their geometry from three dimensional tubes to two dimensional layers and consequently alter their properties upon changes in temperature. A bilayer of two dissimilar materials, one being a polymer, was deposited on a sacrificial substrate and polymer tubes were formed due to the release of the interfacial residual stress upon removal of the sacrificial substrate. The bilayer consisted of a polydimethysiloxane (PDMS) film with a thickness of several microns coated with a nanometer-thick gold (Au) film. Alternatively, SiC was used instead of Au to demonstrate that the fabrication method can be applied using any two dissimilar materials. The diameter and length of the resulting polymer tubes can be tuned through the thickness of the bilayer and the processing conditions used. The modulus and geometric characteristics of these polymer particles were also determined. Finally, the ability of using these polymer particles as delivery vesicles was demonstrated through selective capture and controllable release of a fluorescently-labelled polymer such as poly(ethylene glycol), which was adsorbed only on the Au and not the PDMS surface of the polymer particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据