4.3 Article

Metal-enhanced fluorescence from thermally stable rhodium nanodeposits

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 39, 页码 8600-8606

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm01806f

关键词

-

资金

  1. IoF
  2. department of Chemistry and Biochemistry
  3. UMBC

向作者/读者索取更多资源

Different density rhodium nanoparticulate substrates were fabricated by electron-beam physical vapor deposition in order to study the fluorescence of close-proximity fluorophores to the high thermally stable rhodium nanoparticles. We observed an apparently constant metal-enhanced fluorescence (MEF), when fluorophores were placed in close proximity to rhodium nanoparticles before and after autoclaving of the substrates. Fluorophores with different emission wavelength maxima and free-space quantum yields have also been studied and can undergo different enhancements, a 2.5-fold increase in far-field luminescence was observed from 15 nm Rh films for Tinopal, and up to a 10-fold enhancement was observed for fluorescein. Similarly, the near-field fluorescence enhancement values were estimated to be similar to 125 and 500 fold, respectively. Further, the electromagnetic field distributions around different size Rh nanoparticles were simulated using FDTD to understand the wavelength dependence of the e-field. Our findings show that the decay time of fluorophores was not reduced near to the rhodium substrates, suggesting only an enhanced electric field component is the mechanism for fluorescence enhancement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据