4.3 Article

Robust conductive mesoporous carbon-silica composite films with highly ordered and oriented orthorhombic structures from triblock-copolymer template co-assembly

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 9, 页码 1691-1701

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b919400b

关键词

-

资金

  1. National Science Foundation [CBET-0746664, 20821140450]
  2. Center for Solid State Science
  3. NSERC Canada
  4. NIST-NRC
  5. NIST Office of Microelectronics Programs
  6. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

In this work, we describe a facile approach to improve the robustness of conductive mesoporous carbon-based thin films by the addition of silica to the matrix through the triconstituent organic inorganic-organic co-assembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock-copolymer Pluronic F127. The pyrolysis of the resol-silica-pluronic F127 film yields a porous composite thin film with well-defined mesostructure. X-Ray diffraction (XRD), grazing incidence small angle X-ray scattering (GISAXS), and electron microscopy measurements indicate that the obtained carbon-based thin films have a highly ordered orthorhombic mesostructure (Fmmm) with uniform large pore size (similar to 3 nm). The orthorhombic mesostructure is oriented and the (010) plane is parallel to the silicon wafer substrate. The addition of silica to the matrix impacts the pore size, surface area, porosity, modulus and conductivity. For composite films with approximately 40 wt% silica, the conductivity is decreased by approximately an order of magnitude in comparison to a pure carbon mesoporous film, but the conductivity is comparable to typical printed carbon inks used in electrochemical sensing, similar to 10 S cm(-1). The mechanical properties of these mesoporous silica-carbon hybrid films are similar to the pure carbon analogs with a Young's modulus between 10 GPa and 15 GPa, but the material is significantly more porous. Moreover, the addition of silica to the matrix appears to improve the adhesion of the mesoporous film to a silicon wafer. These mesoporous silica-carbon composite films have appropriate characteristics for use in sensing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据