4.3 Article

Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 4, 页码 659-662

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b918920c

关键词

-

向作者/读者索取更多资源

Since their initial invention, dye-sensitized solar cells (DSSCs) have offered cost-effective photovoltaic systems. For their counter electrodes, DSSCs generally employ Pt nanoparticles. However, Pt is expensive, rare, and already widely in demand as catalyst in various chemical and electrochemical fields. Substitutes for Pt have been sought among carbon materials, such as activated carbon, carbon black, and carbon nanotubes. Carbon nanotubes (CNTs) are the most appealing candidates, because of their favorable electrochemical catalytic activities. Unfortunately, as with other carbon materials, CNTs cannot provide high charge exchange currents. To obtain performances comparable to Pt counter electrodes, large surface areas are required, resulting in thick electrodes. We have found that transparent Pt-free counter electrodes suitable for DSSCs can be prepared using MWCNT micro-balls deposited on transparent substrates. The deposition density (i.e., the number of CNT micro-balls per unit area) can be controlled, allowing transparency and DSSC performance to be tuned. For a counter electrode transparency of 70%, the efficiency of a DSSC using CNT micro-balls is more than 80% of one using Pt nanoparticles. The prepared CNT micro-balls can be usefully applied in other electrochemical devices, such as battery and supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据