4.3 Review

Using fundamental principles to understand and optimize nonlinear-optical materials

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 19, 期 40, 页码 7444-7465

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b907364g

关键词

-

资金

  1. National Science Foundation [ECCS-0756936]
  2. Wright Paterson Air Force Base

向作者/读者索取更多资源

Our approach to the problem of understanding the nonlinear-optical response of a material focuses on fundamental concepts, which are exact and lead to broad results that encompass all material systems. For example, one can calculate precisely and without approximation the fundamental limit of the efficiency of any optical phenomenon. Such limits, in turn, when built into a scale-invariant figure of merit can be used to determine what makes a material optimal for maximizing a desired property, such as its nonlinear-optical response. However, since the results are broad and general ( for example, fundamental guidelines for making better quantum systems may demand a particular shape of an electron cloud or energy level spacing), the difficulty arises in implementing such fine tuning using the approaches available to the synthetic chemist or nanotechnologist. Undoubtedly, an intimate interplay of empirical and fundamental approaches will need to be applied to the problem of optimizing molecules and materials. Much of the work in the field of nonlinear optics has by necessity focused on empirical approaches. Our work focuses on the fundamental approach, which is beginning to bear fruit in providing practical guidelines for making new materials. This paper reviews progress made over the last decade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据