4.3 Article

Energy transfer with semiconductor nanocrystals

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 19, 期 9, 页码 1208-1221

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b812884g

关键词

-

向作者/读者索取更多资源

Forster (or fluorescence) resonant energy transfer ( FRET) is a powerful spectroscopic technique to study interactions, conformational and distance changes, in hybrid nanosystems. Semiconductor nanocrystals, also known as colloidal quantum dots, are highly efficient fluorophores with a strong band-gap luminescence tuneable by size as a result of the quantum confinement effect. Starting from a short summary on the FRET formalism and on the basic properties of semiconductor nanocrystals, this Feature Article provides an overview of the major classes of hybrid FRET systems with semiconductor nanocrystals as at least one component. Systems under consideration include thin solid films containing differently sized semiconductor nanocrystals, solution-based complexes of differently sized semiconductor nanocrystals, nanocrystal-based bioconjugates, and hybrid structures of semiconductor and gold nanoparticles. We focus in particular on the directional energy transfer in layer-by-layer assembled multilayers of differently sized CdTe semiconductor nanocrystals and on the energy transfer from individual rod-like semiconductor CdSe/CdS nanoantennae to single dye molecules, which can be efficiently controlled by external electric fields leading to the realisation of the FRET optical switch.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据