4.3 Article

Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 19, 期 37, 页码 6780-6788

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b907765k

关键词

-

向作者/读者索取更多资源

A novel quantum-dot-based solar cell assembly consisting of core-shell Zn-doped CuInS2@ZnS (Zn-CIS@ZnS) quantum dots associated with short ZnO (5 mu m in length) nanowires was developed and systematically investigated in terms of its nanostructure and optical properties, associated with corresponding solar cell parameters, i.e., V-OC, J(SC), fill factor (FF). In this investigation, the photo-conversion efficiency of the Zn-CIS-based solar cells without the presence of the ZnS shell can be readily tuned by controlling the Zn/Cu ratio. Furthermore, the efficiency was significantly improved upon the deposition of a thin ZnS shell on these Zn-CIS QDs, where a significant enhancement in short-circuit current density (J(SC)) by 88% was observed because the ZnS coating is able to effectively eliminate excited electron recombination and enhance the charge transfer efficiency from Zn-CIS QDs to ZnO nanowires. Power-conversion efficiency as high as 0.71% can be attained, which is improved more than 2-3 times compared with that without ZnS coating. Such a unique nanoarchitecture through coupling with both core-shell QDs and short ZnO nanowires suggests a promising design for a quantum dot-based solar cell with considerably improved power-conversion efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据