4.3 Article

Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 19, 期 41, 页码 7625-7631

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b912012b

关键词

-

资金

  1. NSF [OISE-0413971, CHE-0813553]
  2. HME [PRF-48672-G5]

向作者/读者索取更多资源

This paper reports the development of a facile, general and effective approach, based on microwave irradiation (MWI), for the incorporation of a variety of metallic and bimetallic nanoparticle catalysts within the highly porous coordination polymer MIL-101. The current approach is based on the simultaneous activation of the pores of MIL-101 and the rapid chemical reduction of metal precursors using MWI in the presence of a reducing agent. Small Pd, Cu and Pd-Cu nanoparticles of 2-3 nm are incorporated within the pores and larger particles of 4-6 nm are supported on the surface of the MIL-101 crystals. TEM images reveal that the loading of the particles using MWI is uniform across the MIL crystals. The observed catalytic activities toward CO oxidation of the Pd nanocatalysts supported on the highly porous MIL-101 polymer are significantly higher than any other reported metal clusters supported on metal-organic frameworks. The observed high activity is attributed to the small metal nanoparticles imbedded within the pores of the MIL crystals. The activity of the small embedded particles is higher than those supported on the surface. This allows the use of small metal loadings for efficient low temperature CO oxidation. These results should allow optimization of a new class of nanocatalysts incorporated within the highly porous MIL-101. These materials are promising environmentally relevant catalyst systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据