4.3 Article

Synthesis of two-dimensional single-crystal berzelianite nanosheets and nanoplates with near-infrared optical absorption

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 19, 期 34, 页码 6201-6206

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b907452j

关键词

-

资金

  1. Science Foundation Arizona

向作者/读者索取更多资源

The solar cell industry requires convenient and inexpensive fabrication of semiconductor nanostructures as highly efficient absorptive layers with low-cost, environmentally benign, heavy-metal-free (i.e., free from Hg, Cd, and Pb) and suitable band gap near 1 eV features. In this paper, we demonstrate the synthesis of two-dimensional single-crystal berzelianite (Cu2-xSe) nanosheets (in-plane diameter-to-thickness ratio similar to 100) and nanoplates (in-plane diameter-to-thickness ratio similar to 10) via a simple, green and environmentally benign method of injecting Cu(I)-complex precursor into Se-solution in paraffin liquid. Unlike the previous syntheses of binary chalcogenide nanostructures such as CdSe, the current strategy for berzelianite synthesis does not use expensive and toxic phosphine ligands such as trioctylphosphine (TOP). The products were characterized by a range of methods, such as X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and selected area electron diffraction, revealing that the products have the cubic phase and high-quality single-crystal two-dimensional nanostructure. UV-Vis-NIR absorption spectroscopy reveals that the nanosheets and nanoplates show obvious absorption onsets at 0.89 eV and 0.80 eV, respectively, and strong optical absorption peak at 1.70 eV and 1.62 eV, covering the whole red range of the solar spectrum. The present study opens a new avenue to green and low-cost controllable synthesis of binary chalcogenides with technological applications in solar energy conversion and also in a wide range of photonic devices operating in the near-infrared.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据