4.3 Article

Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 19, 期 9, 页码 1258-1264

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b815999h

关键词

-

资金

  1. National Natural Science Foundation of China [20575069]
  2. Macquarie University Research Fellowship Scheme
  3. ARC/NHMRC Network

向作者/读者索取更多资源

Time-gated luminescence bioimaging based on microsecond-lifetime luminescent biolabels can provide complete background-free conditions for detecting target cells in an autofluorescence biosample matrix. However, a major drawback of the current lanthanide biolabels is the requirement for UV excitation (<370 nm), which leads to damage to many biological systems and greatly affects the improvement of time-gated luminescence instruments. Herein we describe luminescent europium nanoparticles that have an excitation peak around 406 nm with high quantum yield (similar to 66%) and fine monodispersity in aqueous solutions. The nanoparticles were prepared by copolymerization of a visible-light-sensitized Eu3+ complex 4,4'-bis(1 '',1 '',1 '',2 '',2 '',3 '',3 ''-heptafluoro-4 '',6 ''-hexanedion-6 ''-yl) chlorosulfo-o-terphenyl-Eu3+-2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine conjugated with 3-aminopropyl(triethoxy) silane, free 3-aminopropyl(triethoxy) silane and tetraethyl orthosilicate in a water-in-oil reverse microemulsion. Characterization by transmission electron microscopy and luminescence spectroscopy indicates that the nanoparticles are monodisperse, spherical and uniform in size, <50 nm in diameter, and show strong visible-light-sensitized luminescence with a large quantum yield and a long luminescence lifetime. The new nanoparticles were successfully applied to distinguish an environmental pathogen, Giardia lamblia, within a concentrate of environmental water sample using a time-gated luminescence microscope with pulsed visible light excitation. The method resulted in highly specific and sensitive imaging for Giardia lamblia. These results suggest a broad range of potential bioimaging applications where both long time microscopy observation and high signal-to-background ratio are required for samples containing high concentrations of autofluorescence background.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据