4.3 Article

Repair of enamel by using hydroxyapatite nanoparticles as the building blocks

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 18, 期 34, 页码 4079-4084

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b806090h

关键词

-

资金

  1. National Natural Science Foundation of China [20571064, 20601023, 20701032]
  2. National Basic Research Project of China [2007CB516806]
  3. Zhejiang Provincial Natural Science Foundation [R407087]
  4. Changjiang Scholars Program

向作者/读者索取更多资源

The application of calcium phosphates and their nanoparticles have been received great attention. However, hydroxyapatite (HAP) is not suggested in dental therapy to repair the damaged enamel directly although this compound has a similar chemical composition to enamel. We note that the size-effects of HAP are not taken into account in the previous studies as these artificial particles frequently have sizes of hundreds of nanometres. It has recently been revealed that the basic building blocks of enamel are 20-40 nm HAP nanoparticles. We suggest that the repair effect of HAP can be greatly improved if its dimensions can be reduced to the scale of the natural building blocks. Compared with conventional HAP and nano amorphous calcium phosphate (ACP), our in vitro experimental results demonstrate the advantages of 20 nm HAP in enamel repairs. The results of scanning electron microscopy, confocal laser scanning microscopy, quantitative measurement of the adsorption, dissolution kinetics, and nanoindentation, show the strong affinity, excellent biocompatibility, mechanical improvement, and the enhancement of erosion-free by using 20 nm particles as the repairing agent. However, these excellent in vitro repair effects cannot be observed when conventional HAP and ACP are applied. Clearly, nano HAP with a size of 20 nm shares similar characteristics to the natural building blocks of enamel so that it may be used as an effective repair material and anticaries agent. Our current study highlights the analogues of nano building blocks of biominerals during biomedical applications, which provide a novel pathway for biomimetic repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据