4.3 Article

Acetylation of dendrimer-entrapped gold and silver nanoparticles

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 18, 期 5, 页码 586-593

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b714133e

关键词

-

向作者/读者索取更多资源

Surface functionalization of dendrimer-entrapped metal nanoparticles (NPs) is of great importance in the area of biological sensing and therapeutics. In this work, dendrimer-entrapped gold and silver NPs (Au DENPs and Ag DENPs) prepared using amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) as templates were subjected to acetylation in order to neutralize the surface positive charges. UV-Vis spectrometry, nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), polyacrylamide gel electrophoresis (PAGE), and zeta-potential measurements were utilized to characterize both Au DENPs and Ag DENPs modified with a defined degree of acetylation. The size, size distribution, optical properties, water solubility, and stability of Au DENPs do not change after acetylation, while their surface charges change. In contrast, acetylated Ag DENPs show optical properties that are slightly different from the unmodified ones, while reserving similar water solubility and stability. The surface charge decreases towards neutral with an increasing degree of acetylation. More interestingly, the size of partially acetylated Ag DENPs displays a bimodal distribution (2.9 nm and 11.0 nm), whereas the pristine Ag DENPs and the completely acetylated Ag DENPs are relatively monodisperse with sizes of 2.9 nm and 11.0 nm, respectively. It indicates that complete acetylation transfers Ag DENPs to dendrimer-stabilized Ag NPs (Ag DSNPs). The size and morphology changes of Au and Ag DENPs upon acetylation were further confirmed by molecular dynamics simulations. Such synthetic modifications are expected to reduce the toxicity of dendrimer-entrapped metal NPs and offer further biofunctionalization to produce multifunctional metal NPs for a range of biological sensing and therapeutics applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据