4.4 Article

Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution

期刊

JOURNAL OF MASS SPECTROMETRY
卷 48, 期 9, 页码 989-997

出版社

WILEY-BLACKWELL
DOI: 10.1002/jms.3245

关键词

ion mobility; polarizable drift-gas; isomer separation

资金

  1. Brazilian Science Foundation FAPESP
  2. Brazilian Science Foundation CNPq
  3. Brazilian Science Foundation FINEP

向作者/读者索取更多资源

We have studied the behavior of isomers and analogues by traveling wave ion mobility mass spectrometry (TWIM-MS) using drift-gases with varying masses and polarizabilities. Despite the reduced length of the cell (18cm), a pair of constitutional isomers, N-butylaniline and para-butylaniline, with theoretical collision cross-section values in helium ((He)) differing by as little as 1.2 angstrom(2) (1.5%) but possessing contrasting charge distribution, showed baseline peak-to-peak resolution (Rp-p) for their protonated molecules, using carbon dioxide (CO2), nitrous oxide (N2O) and ethene (C2H4) as the TWIM drift-gas. Near baseline Rp-p was also obtained in CO2 for a group of protonated haloanilines (para-chloroaniline, para-bromoaniline and para-iodoaniline) which display contrasting masses and theoretical (He), which differ by as much as 15.7 angstrom(2) (19.5%) but similar charge distributions. The deprotonated isomeric pair of trans-oleic acid and cis-oleic acid possessing nearly identical theoretical (He) and (N2) as well as similar charge distributions, remained unresolved. Interestingly, an inversion of drift-times were observed for the 1,3-dialkylimidazolium ions when comparing He, N-2 and N2O. Using density functional theory as a means of examining the ions electronic structure, and He and N-2-based trajectory method algorithm, we discuss the effect of the long-range charge induced dipole attractive and short-range Van der Waals forces involved in the TWIM separation in drift-gases of differing polarizabilities. We therefore propose that examining the electronic structure of the ions under investigation may potentially indicate whether the use of more polarizable drift-gases could improve separation and the overall success of TWIM-MS analysis. Copyright (c) 2013 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据