4.4 Article

In vitro metabolic fate of alizapride: evidence for the formation of reactive metabolites based on liquid chromatography-tandem mass spectrometry

期刊

JOURNAL OF MASS SPECTROMETRY
卷 47, 期 6, 页码 737-750

出版社

WILEY-BLACKWELL
DOI: 10.1002/jms.3011

关键词

alizapride; acrolein; reactive metabolites; microsomes; LC-MS

资金

  1. M.I.U.R.-PRIN, Italy

向作者/读者索取更多资源

The study of the formation of reactive metabolites during drug metabolism is one of the major areas of research in drug development since the link between reactive metabolites and drug adverse effects was well recognized. In particular, it has been shown that acrolein, a reactive carbonyl species sharing carbonylating and alkylating properties, binds covalently to nucleophilic sites in proteins, causing cellular damage. Alizapride, (+/-)-6-methoxy-N-{[1-( prop-2-en-1-yl)-pyrrolidin-2-yl]methyl}-1H-benzotriazole-5-carboxamide, is a N-allyl containing dopamine antagonist with antiemetic properties for which no data concerning its metabolic fate are so far reported. The study of the in vitro metabolism of alizapride showed the formation of acrolein during the oxidative N-deallylation. Moreover, the formation of an epoxide metabolite has been also described suggesting its role as a putative structural alert. The reactivity of the acrolein and the epoxide generated in alizapride metabolism was demonstrated by the formation of the corresponding adducts with nucleophilic thiols. Overall, ten metabolites have been identified and characterized by electrospray ionization tandem mass spectrometry analysis allowing to propose an in vitro metabolic scheme for alizapride. At the best of our knowledge, this is the second case of a drug involved in the generation of acrolein during its metabolism being the first represented by cyclophosphamide. Copyright (C) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据