4.4 Article

Tandem mass spectrometry for the analysis of self-sorted pseudorotaxanes: the effects of Coulomb interactions

期刊

JOURNAL OF MASS SPECTROMETRY
卷 45, 期 7, 页码 788-798

出版社

WILEY
DOI: 10.1002/jms.1769

关键词

gas-phase chemistry; Coulomb interaction; self-sorting; supramolecular chemistry; interlocked molecules

资金

  1. Deutsche Forschungsgemeinschaft [SFB 765]
  2. Fonds der Chemischen Industrie

向作者/读者索取更多资源

The increasing complexity of self-assembled supramolecules generates the need for analytical techniques that can accurately elucidate their structures. Here, we explore the ability of tandem mass spectrometry to deliver structural information on a series of self-sorted crown ether/ammonium pseudorotaxanes. Of these intertwined molecules, different charge states are accessible and the effects of Coulomb interactions on the fragmentation pattern can be examined. Three different cases can be distinguished: (1) one or more counterions are present in the complex and compete with the crown for binding to the ammonium ion. This destabilizes the supramolecular bond. (2) In multiply charged complexes, charge repulsion significantly alters the fragmentation behavior as compared with singly charged ions. (3) If guest and host are both charged, the supramolecular bond becomes very weak. The different charge states provide different pieces of information about the supramolecules under study. Although singly charged complexes provide data on the building block connectivity, the doubly charged analogs are more reliable with respect to complex stoichiometry. As there are several factors which may cause differences in the gas phase and solution behavior of supramolecules (the presence and absence of solvation, changes in the strength of non-covalent interactions upon ionization), it is important to establish well understood correlations between the complexes' gas-phase behavior and their solution structures. A more detailed understanding will help to characterize the structures of even more complex supramolecular architectures by mass spectrometry. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据