4.5 Article

Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions

期刊

JOURNAL OF MARINE SYSTEMS
卷 187, 期 -, 页码 206-222

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmarsys.2018.08.001

关键词

Bay of Bengal; Sensitivity study; Winds and rivers; Stratification and barrier layer; Circulation; Coastal upwelling

资金

  1. Fulbright-Nehru Foundation
  2. Office of Naval Research (ONR) [N00014-15-1-2616]
  3. Tata Center at MIT
  4. Science and Engineering Research Board (SERB), Government of India

向作者/读者索取更多资源

The sensitivity of the Bay of Bengal (BoB) upper ocean circulation and thermohaline structure to varying wind strengths and river salinity conditions is investigated using a set of long-term mesoscale simulations. The Regional Ocean Modeling System (ROMS) simulations differ in their forcing fields for winds (strong vs. weak) and in their representations of river input salinity conditions (seasonally varying estuarine salinity vs. zero salinity). The sensitivities are analyzed in terms of the responses of the surface circulation, thermohaline structure, freshwater plume dispersion, and the coastal upwelling along the western boundary. All the simulations reproduce the main broad-scale features of the Bay, while their magnitudes and variabilities depend on the forcing conditions. The impact of stronger wind is felt at greater depths for temperature than for salinity throughout the domain; however, the impact is realized with vertical distributions that are different in the northern than in the southern Bay. As expected, the stronger wind-induced enhanced mixing lowers (enhances) the upper ocean temperature (salinity) by 0.2 degrees C (0.3 psu), and weakens the near-surface stratification. Moreover, stronger wind enhances eddy activity, strengthens the springtime Western Boundary Current (WBC) and enhances coastal upwelling during spring and summer along the east coast of India. The fresher river input reduces the surface salinity and hence enhances the spreading and intensity of the freshwater plume, stratification, and barrier layer thickness. The lower salinity simulation leads to an eddy-dominant springtime WBC, and enhances the freshness, strength, and southward extent of the autumn East India Coastal Current (EICC). The stronger wind simulations appear to prevent the spreading of the freshwater plume during the summer monsoon due to enhanced mixing. Fresher river input reduces the overall surface salinity by similar to 0.4 psu; however, it significantly underestimates the salinity near the river mouths, whereas the estuarine salinity river input simulations are closer to reality. These results highlight the importance of river input salinity and realistic strong winds in reducing model biases of highresolution simulations for the Bay of Bengal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据