4.5 Article

Zooplankton distribution in the western Arctic during summer 2002:: Hydrographic habitats and implications for food chain dynamics

期刊

JOURNAL OF MARINE SYSTEMS
卷 70, 期 1-2, 页码 97-133

出版社

ELSEVIER
DOI: 10.1016/j.jmarsys.2007.04.001

关键词

zooplankton; copepods; transport mechanisms; food webs; Arctic; Chukchi Sea; Beaufort Sea

向作者/读者索取更多资源

Global warming is presently a widely accepted phenomenon with a broad range of anticipated impacts on marine ecosystems. Alterations in temperature, circulation and ice cover in Arctic seas may result in changes in food chain dynamics, beginning with planktonic processes. As part of the Shelf-Basin Interactions (SBI) program, we conducted zooplankton surveys during summer 2002 to assess the biomass, distribution and abundance of copepods and other pelagic zooplankton over the Chukchi and Beaufort shelves, slope regions and the adjacent Canada Basin. The motivation for our fieldwork was the question, Will global change, particularly warming, result in more large-sized zooplankton which support a pelagic food web of fish, birds, and certain mammals over the Chukchi and Beaufort shelves or in more smaller-sized zooplankton which will diminish the fish, birds and mammals and favor sedentary benthic organisms? The objectives of the present study were 1) to census the regional zooplankton community and establish a baseline for comparisons with historical and future studies and 2) to determine whether large-bodied copepods associated with deep waters of the Bering Sea or the Canada Basin were transported to the shelves in sufficient numbers to modify the food web in a region where smaller copepods often dominate the zooplankton numerically. Spatial distributions of zooplankton communities were clearly associated with hydrographic habitats determined by the chemical, physical and biological characteristics of the upper water layer. Smaller taxa dominated the shelf communities while offshore zooplankton assemblages were characterized by large-bodied copepods. The mesozooplankton community was numerically dominated by copepod nauplii and small-bodied juveniles, including Pseudocalanus spp. and Oithona similis. We observed very few large-bodied copepods from the Bering Sea. However, much of the shelf region surveyed included relatively numerous Calanus glacialis juveniles and adults, suggesting that these copepods were advected onto the shelf and possibly reproducing there. Juvenile stages of the large-bodied copepod Calanus hyperboreus were found in relative abundance on the Chukchi shelf in the vicinity of Hanna Canyon. These observations suggest that large-bodied, deep-water species from the basin are advected onto the Chukchi Shelf where they may impact the fate of shelf-derived primary production and alter the food webs of the shelves. Regional comparisons of abundances of selected taxa enumerated in the present study with sample data from the early 1950s suggested that some taxa were more abundant in the SBI region in 2002 than ca. 50 years ago. Long-tern changes in planktonic populations are expected to have significant implications for shelf-basin exchange of biogenic material in the Chukchi and Beaufort Seas and the adjacent Arctic Basin. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据