4.5 Article

Modeling nonlinear roll damping with a self-consistent, strongly nonlinear ship motion model

期刊

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY
卷 13, 期 2, 页码 127-137

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s00773-007-0262-9

关键词

roll motion; damping; numerical model

向作者/读者索取更多资源

Appropriate modeling of roll damping is one of the key issues in accurately predicting ship roll motion. The difficulties in modeling roll damping arise from the nonlinear nature of the phenomena. In this study, we report a new effort in modeling the bilge keel roll damping effect based on the blocking mechanisms of an object in the potential flow. This effect can be implemented as a component of appropriate ship motion models. We used our digital, self-consistent, ship experimental laboratory (DiSSEL) ship motion model to test its effectiveness in predicting ship roll motion. Our numerical experiment demonstrated clearly that the implementation of this roll damping component improves significantly the accuracy of numerical model results (the results were compared with ship experiment data from the Naval Surface Warfare Center, Carderock Division, Maneuvering and Seakeeping Facility).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据