4.5 Article

Dynamic Response of Battery Tabs Under Ultrasonic Welding

出版社

ASME
DOI: 10.1115/1.4024535

关键词

-

向作者/读者索取更多资源

Ultrasonic metal welding (USMW) for battery tabs must be performed with 100% reliability in battery pack manufacturing as the failure of a single weld essentially results in a battery that is inoperative or cannot deliver the required power due to the electrical short caused by the failed weld. In ultrasonic metal welding processes, high-frequency ultrasonic energy is used to generate an oscillating shear force (sonotrode force) at the interface between a sonotrode and few metal sheets to produce solid-state bonds between the sheets clamped under a normal force. These forces, which influence the power needed to produce the weld and the weld quality, strongly depend on the mechanical and structural properties of the weld parts and fixtures in addition to various welding process parameters, such as weld frequencies and amplitudes. In this work, the effect of structural vibration of the battery tab on the required sonotrode force during ultrasonic welding is studied by applying a longitudinal vibration model for the battery tab. It is found that the sonotrode force is greatly influenced by the kinetic properties, quantified by the equivalent mass, equivalent stiffness, and equivalent viscous damping, of the battery tab and cell pouch interface. This study provides a fundamental understanding of battery tab dynamics during ultrasonic welding and its effect on weld quality, and thus provides a guideline for design and welding of battery tabs from tab dynamics point of view.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据