4.0 Article

RELATIONSHIPS BETWEEN JOINT MOTION AND FACET JOINT CAPSULE STRAIN DURING CAT AND HUMAN LUMBAR SPINAL MOTIONS

出版社

MOSBY-ELSEVIER
DOI: 10.1016/j.jmpt.2011.05.005

关键词

Feline; Biomechanics; Low Back Pain; Mechanical; Range of Motion; Zygapophyseal Joint; Facet Joint

资金

  1. National Institute of Health National Center for Complementary and Alternative Medicine [U19AT001701]
  2. Ruth L. Kirschstein National Research Service Award [F31AT 002666]

向作者/读者索取更多资源

Objective: The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and is thought to contribute to proprioception and pain. Biomechanical investigations of the FJC have commonly used human cadaveric spines, whereas combined biomechanical and neurophysiological studies have typically used nonhuman animal models. The purpose of this study was to develop mathematical relationships describing vertebral kinematics and FJC strain in cat and human lumbar spine specimens during physiological spinal motions to facilitate future efforts at understanding the mechanosensory role of the FJC. Methods: Cat lumbar spine specimens were tested during extension, flexion, and lateral bending. Joint kinematics and FJC principal strain were measured optically. Facet joint capsule strain-intervertebral angle (IVA) regression relationships were established for the 3 most caudal lumbar joints using cat (current study) and human (prior study) data. The FJC strain-IVA relationships were used to estimate cat and human spine kinematics that corresponded to published sensory neuron response thresholds (5% and 10% strain) for low-threshold mechanoreceptors. Results: Significant linear relationships between IVA and strain were observed for both human and cat during motions that produced tension in the FJCs (P < .01). During motions that produced tension in the FJCs, the models predicted that FJC strain magnitudes corresponding to published sensory neuron response thresholds would be produced by IVA magnitudes within the physiological range of lumbar motion. Conclusions: Data from the current study support the proprioceptive role of lumbar spine FJC and low-threshold mechanoreceptive afferents and can be used in interpreting combined neurophysiological and biomechanical studies of cat lumbar spines. (J Manipulative Physiol Ther 2011;34:420-431)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据