4.3 Article

Time-of-flight remote detection MRI of thermally modified wood

期刊

JOURNAL OF MAGNETIC RESONANCE
卷 202, 期 1, 页码 78-84

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jmr.2009.10.002

关键词

NMR spectroscopy; Remote detection; Flow imaging; Wood; Thermal modification; Xenon

向作者/读者索取更多资源

We demonstrate that time-of-flight (TOF) remote detection (RD) magnetic resonance imaging (MRI) provides detailed information about physical changes in wood due to thermal modification that is not available with conventional nuclear magnetic resonance (NMR) based techniques. In the experiments, xenon gas Was forced to flow through Pinus sylvestris pine wood samples, and the flow paths and dispersion of gas atoms were observed by measuring (129)Xe TOF RD MRI images from the samples. MRI sensitivity of xenon was boosted by the spin exchange optical pumping (SEOP) method. Two different samples were studied: a reference sample, dried at low temperature, and a modified sample, which was thermally modified at 240 degrees C after the drying. The samples were taken next to each other from the same wood plank in order to ensure the comparability of the results. The most important conclusion is that both the smaller dispersion observed in all the TOF RD experiments independent of each other and the decreased amount of flow paths shown by the time projection of z-encoded TOF RD MRI experiment imply that a large amount of pits connecting tracheid cells are closed in thermal modification. Closed pits may be one reason for reduced Moisture content and improved dimensional stability of wood achieved in thermal modification. This is the first time biological samples have been investigated by TOF RD MRI. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据