4.1 Article

The Flame Retardancy, Thermal Properties, and Degradation Mechanism of Zinc Alginate Films

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00222348.2014.891169

关键词

coordination structure; flame retardancy; thermal degradation mechanism; thermal properties; zinc alginate

资金

  1. National Science Foundation of China [51203126, 51073122]

向作者/读者索取更多资源

The coordination structure, flame retardancy, thermal stabilities, and degradation mechanism of zinc alginate films were studied by Fourier transform infrared spectroscopy (FTIR), limiting oxygen index (LOI), vertical burning (UL-94), and thermogravimetric analysis (TGA) tests. The FTIR results showed that the structure of zinc alginate was correlated to its bidentate bridging coordination. The LOI (49.3) and UL-94 (V-0 rating) results indicated that zinc alginate was an inherent flame retardant material. The TG results showed that zinc alginate had better thermal stabilities than sodium alginate in the lower temperature zones; however, the thermal stabilities of zinc alginate were worse than those of sodium alginate at higher temperatures because of the decomposition of zinc oxalate formed in the degradation process of zinc alginate. Based on the TG results and FTIR of the residues at different temperatures, the effect of zinc ions on the degradation process of alginate was different from that of sodium ions. The zinc ions can catalyze alginate to form the residues and increase the amount of the residues, finally forming zinc oxide. Further, it could decrease the release of flammable gases and increase the flame retardancy of alginate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据