4.6 Article

Luminescence characteristics of cobalt doped TiO2 nanoparticles

期刊

JOURNAL OF LUMINESCENCE
卷 132, 期 1, 页码 178-184

出版社

ELSEVIER
DOI: 10.1016/j.jlumin.2011.08.020

关键词

Doped nanoparticles; Defects; Luminescence; Defect centers; Crystal field; Decay time

类别

向作者/读者索取更多资源

TiO2 nanoparticles doped with two different concentrations of Cobalt, 0.02 and 0.04 mol, are prepared by sol-gel method. The crystalline phase of the doped and undoped nanoparticles and particle sizes are observed with X-ray diffraction and transmission electron microscope. FTIR confirms the bonding interaction of Co2+ in TiO2 lattice framework. The UV absorption spectra of the doped material shows two absorption peaks in the visible region related to d-d electronic transitions of Co2+ in TiO2 lattice. Compared to undoped TiO2 nanoparticles, the cobalt doped samples show a red shift in the band gap. Steady state photoluminescence spectra give emission peaks related to oxygen defects. The decrease in the intensity ratio of UV/visible emission peaks confirms distortion of structural regularity and formation of defects after doping. The intensity ratio of different visible emission peaks is nearly same for undoped and 0.02 Co2+. However, this ratio decreases profoundly at 0.04 Co2+, due to concentration quenching effect. Photoluminescence excitation spectra, recorded at 598 nm emission wavelength, give different excitation peaks associated with oxygen vacancies and Co2+. Time resolved photoluminescence spectra give longer decay time for doped samples, indicating longer relaxation of conduction band electrons on the defect and on dopant sites. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据