4.6 Article

Persistent mechanoluminescence induced by elastic deformation of ZrO2:Ti phosphors

期刊

JOURNAL OF LUMINESCENCE
卷 130, 期 11, 页码 2218-2222

出版社

ELSEVIER
DOI: 10.1016/j.jlumin.2010.06.023

关键词

Mechanoluminescence; Triboluminescence; ZrO2:Ti; Detrapping; Piezoelectricification

类别

向作者/读者索取更多资源

ZrO2:Ti phosphors show such a strong mechanoluminescence (ML) that it can be seen in day light with naked eye. When a pellet of ZrO2:Ti phosphor mixed in epoxy resin is deformed in the elastic region at a fixed strain rate using a testing machine, ML intensity increases linearly with time, and when the deformation is stopped, ML intensity decreases exponentially with time. For a given strain rate. ML intensity increases linearly with pressure, and for a given pressure, ML intensity increases linearly with the strain rate. The total ML intensity, in the deformation region, increases quadratically with pressure; however, the total ML intensity in the post-deformation region increases linearly with pressure. ML intensity decreases with successive number of pressings, whereby the reduced ML intensity can be recovered by UV-irradiation of the sample. ML intensity increases linearly with density of filled electron traps and it is optimum for a particular concentration of Ti in ZrO2. ML intensity should change with increasing temperature of the phosphors. Although ZrO2 is non-piezoelectric as a whole, it seems that the local structures near the Ti ions in ZrO2 crystals are in the piezoelectric phase. The elastico ML in ZrO2 phosphors can be understood on the basis of the localized piezoelectrification-induced detrapping model. According to this model, the localized piezoelectric field near Ti ions causes detrapping of electrons and subsequently the detrapped electrons moving in the conduction band are captured by the energy state of excited Ti4+ ions, whereby excited Ti4+ ions are produced and consequently the decay of excited Ti4+ ions gives rise to the light emission. The expressions derived on the basis of this model are able to explain satisfactorily the characteristics of ML The relaxation time of localized piezoelectric charges and the threshold pressure for the ML emission can be determined from ML measurements. The long decay of elastico ML indicates the possibility of exploring persistent elastico ML, which may be useful for the fabrication of dim light sources capable of operating without any external power. (c) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据