4.3 Article

Optimization and quantification of protein synthesis inside liposomes

期刊

JOURNAL OF LIPOSOME RESEARCH
卷 20, 期 1, 页码 73-83

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3109/08982100903402954

关键词

Nanotechnology; vaccines; cell-free protein synthesis

向作者/读者索取更多资源

Synthetic biology aims at reprogramming existing, or creating new, biological systems, with the ultimate aim to obtain artificial cells whose functions can be tailored. For the latter, encapsulation of complex biochemical reactions into cell-sized compartments, such as liposomes, is required. Recently, several groups have demonstrated that proteins of interest can be produced de novo within liposomes by entrapping cell-free protein-synthesis systems and DNA templates inside liposomes. Although detectable, intraliposomal protein synthesis was generally poor. Here, we have optimized intraliposomal cell-free protein synthesis by changing several variables, including lipid composition as well as liposome, pyrophosphatase, and T7 RNA polymerase concentration. Further, by using an activity-based assay, we have quantified the amount of full-length protein that was produced from DNA templates inside liposomes before and after optimization of aforementioned variables. Based on the model protein beta-galactosidase, it is demonstrated that liposomal protein synthesis can yield microgram quantities of protein (30-40 mu g/mL liposomes).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据