4.7 Article

Filter Design for SOA-Assisted SS-WDM Systems Using Parallel Multicanonical Monte Carlo

期刊

JOURNAL OF LIGHTWAVE TECHNOLOGY
卷 28, 期 1, 页码 79-90

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2009.2032428

关键词

Forward error correction (FEC); noise suppression; modeling; multicanoncial monte carlo; parallel; SOA; SS-WDM

向作者/读者索取更多资源

We address design and optimization of optical filters for spectrum-sliced wavelength division multiplexed (SS-WDM) systems employing saturated semiconductor optical amplifiers (SOAs) to suppress intensity noise. We study the impact of the shape of both slicing and channel selecting optical filters vis-a-vis two important impairments: the filtering effect and the crosstalk. The quantification of bit error rate (BER) is made possible by a parallel implementation of the multicanonical Monte Carlo algorithm. The intensity noise suppression by the SOA and signal degradation by subsequent optical filtering are studied both numerically and experimentally. We find optical filter shape and bandwidth that minimizes BER. By varying channel spacing and width, we estimate the achievable spectral efficiency when using both noise-cleaning SOA and forward error correction. We show that when constrained to use a symmetric architecture, i.e., identical filters for both slicing and channel selecting filters, there is a degradation in achievable spectral efficiency. We show that noise suppression is robust to variations in relative channel powers in multichannel systems. Our numerical simulations, vetted experimentally, provide accurate and quantitative results on optimized system performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据