4.4 Article

Innovative approach of joining hybrid components

期刊

JOURNAL OF LASER APPLICATIONS
卷 23, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.2351/1.3600703

关键词

-

资金

  1. German Research Foundation DFG as part of the Cluster of Excellence Integrative Production Technology for High-Wage Countries at the RWTH Aachen University

向作者/读者索取更多资源

Joining of dissimilar materials is gaining more and more importance especially in the automotive industry. The latest international initiatives concerning the average fleet CO2-emissions are forcing manufacturers to reduce fuel consumption and exhaust gas output. This can mainly be achieved by reducing the weight of the vehicles. New methods for weight optimization have been enabled by material selections adapted to local strength requirements. While plastics are characterized by low density, low price, and literally unlimited shaping, metals can withstand distinctly higher mechanical loads. Hybrid components combine the contradictory characteristics of plastics and metal and thus can lead to advantageous construction part properties. As a result, light and concomitantly stiff components can be produced. The need for joining these dissimilar materials without using additional material such as adhesives or primers is a central challenge. A new approach to overcome the problems of state-of-the-art technologies is using laser radiation to ablate the metal surface in order to create microstructures with undercut grooves. When the above placed plastic is melted with laser radiation or induction joining, the material expands into these structures through external clamping pressure and after setting the joining results due to microclamping. In this paper, the influence of different microstructure geometries and the process parameters of this innovative approach are presented and discussed in detail. (C) 2011 Laser Institute of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据