4.3 Article

The Protective Effects of Salidroside from Exhaustive Exercise-Induced Heart Injury by Enhancing the PGC-1 alpha-NRF1/NRF2 Pathway and Mitochondrial Respiratory Function in Rats

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2015/876825

关键词

-

资金

  1. Natural Science Foundation of China [81173585]
  2. Hebei Province Natural Science Foundation of China [C2014104010]

向作者/读者索取更多资源

Objective. To test the hypothesis that salidroside (SAL) can protect heart from exhaustive exercise-induced injury by enhancing mitochondrial respiratory function and mitochondrial biogenesis key signaling pathway PGC-1 alpha-NRF1/NRF2 in rats. Methods. Male Sprague-Dawley rats were divided into 4 groups: sedentary (C), exhaustive exercise (EE), low-dose SAL (LS), and high-dose SAL (HS). After one-time exhaustive swimming exercise, we measured the changes in cardiomyocyte ultrastructure and cardiac marker enzymes and mitochondrial electron transport system (ETS) complexes activities in situ. We also measured mitochondrial biogenesis master regulator PGC-1 alpha and its downstream transcription factors, NRF1 and NRF2, expression at gene and protein levels. Results. Compared to C group, the EE group showed marked myocardium ultrastructure injury and decrease of mitochondrial respiratory function (P < 0.05) and protein levels of PGC-1 alpha, NRF1, and NRF2 (P < 0.05) but a significant increase of PGC-1 alpha, NRF1, and NRF2 genes levels (P < 0.05); compared to EE group, SAL ameliorated myocardium injury, increased mitochondrial respiratory function (P < 0.05), and elevated both gene and protein levels of PGC-1 alpha, NRF-1, and NRF-2. Conclusion. Salidroside can protect the heart from exhaustive exercise-induced injury. It might act by improving myocardial mitochondrial respiratory function by stimulating the expression of PGC-1 alpha-NRF1/NRF2 pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据