4.7 Article

Protective Effect of Kit Signaling for Melanocyte Stem Cells against Radiation-Induced Genotoxic Stress

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 131, 期 9, 页码 1906-1915

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/jid.2011.148

关键词

-

资金

  1. Japan Science and Technology Agency
  2. JSPS
  3. MEXT
  4. Grants-in-Aid for Scientific Research [22590239] Funding Source: KAKEN

向作者/读者索取更多资源

Radiation-induced hair graying is caused by irreversible defects in the self-renewal and/or development of follicular melanocyte stem cells in the hair follicles. Kit signaling is an essential growth and differentiation signaling pathway for various cell lineages including melanocytes, and its radioprotective effects have been shown in hematopoietic cells. However, it is uncertain whether Kit signaling exerts a radioprotective effect for melanocytes. In this study, we found that various loss-of-function mutations of Kit facilitate radiation-induced hair graying. In contrast, transgenic mice expressing the ligand for Kit (Kitl) in the epidermis have significantly reduced levels of radiation-induced hair graying. The X-ray doses used did not show a systemic lethal effect, indicating that the in vivo radiosensitivity of Kit mutants is mainly caused by the damaged melanocyte stem cell population. X-ray-damaged melanocyte stem cells seemed to take the fate of ectopically pigmented melanocytes in the bulge regions of hair follicles in vivo. Endothelin 3, another growth and differentiation factor for melanocytes, showed a lesser radioprotective effect compared with Kitl. These results indicate the prevention of radiation-induced hair graying by Kit signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据