4.7 Article

Selection of Tumorigenic Melanoma Cells Using ALDH

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 130, 期 12, 页码 2799-2808

出版社

ELSEVIER SCIENCE INC
DOI: 10.1038/jid.2010.237

关键词

-

资金

  1. NIH [AR01]
  2. Department of Veterans Affairs
  3. Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development

向作者/读者索取更多资源

Despite increasing knowledge regarding melanoma-initiating cells (MICs), questions persist regarding the number and phenotypic nature of cells with tumor-generating capability. Evidence for a phenotypically distinct human MIC has been found in NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mice. However, a phenotypically distinct human MIC was not found in the NOD/SCIDIl2rg(-)/(-) (NSG) mouse model. The demonstration of a distinct population of human melanoma cells responsible for tumorigenesis and tumor cell self-renewal would provide an important target for new melanoma therapies. In this study, we show a 100-fold range in MIC frequency in human melanoma (1 in 18,000 to 1 in 1,851,000 cells) in the NOD/SCID mouse. In this model, human melanoma cells with high aldehyde dehydrogenase (ALDH) activity were enriched 16.8-fold in tumorigenic cells over unfractionated (UNF) cells, such that 1 in 21,000 cells was a MIC. In the NSG mouse, the ALDH expressing cell population was enriched 100-fold in tumorigenic cells over UNF cells, such that one in four cells was a MIC. Xenograft melanomas that developed from ALDH(+) cells displayed robust self-renewal, whereas those from ALDH(-) cells showed minimal self-renewal in vitro. Thus, ALDH(+) melanoma cells have enhanced tumorigenicity over ALDH(-) cells and superior self-renewal ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据