4.7 Article

Prediction of drill flank wear using ensemble of co-evolutionary particle swarm optimization based-selective neural network ensembles

期刊

JOURNAL OF INTELLIGENT MANUFACTURING
卷 27, 期 2, 页码 343-361

出版社

SPRINGER
DOI: 10.1007/s10845-013-0867-2

关键词

Drilling; Flank wear; Neural network ensemble; Particle swarm optimization; Co-evolution

资金

  1. Defense Industrial Technology Development Program [A2520110003]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT0968]

向作者/读者索取更多资源

Flank wear prediction plays an important role in achieving improved productivity and better quality of the product. This study presents an effective co-evolutionary particle swarm optimization-based selective neural network ensembles (E-CPSOSEN) enabled tool wear prediction model for flank wear prediction in drilling operations. The E-CPSOSEN algorithm utilized two populations of particle swarm optimizations (PSOs) that are co-evolved simultaneously, one discrete particle swarm optimizations for evolving the binary selection vector, and the other continuous particle swarm optimizations for evolving the real weight vector. The two PSOs interact with each other through the fitness evaluation. The E-CPSOSEN algorithm is first tested on four benchmark problems taken from the literature. Upon achieving good results for test cases, the E-CPSOSEN enabled tool wear prediction model was employed to three illustrative case studies of flank wear prediction in drilling operations. Significant improvement is also obtained in comparison to the results already reported in literatures, which further reveals that the E-CPSOSEN enabled tool wear prediction model has more wonderful prediction performance than conventional single ANN-based models in predicting the flank wear in drilling operations. Moreover, an investigation was also conducted to identity the effects of the major parameters of the E-CPSOSEN algorithm upon its prediction performance. From the given results, the proposed enabled tool wear prediction model may be a promising tool for the accurate and automatic prediction of flank wear in drilling operations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据