4.7 Article

Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel

期刊

JOURNAL OF INTELLIGENT MANUFACTURING
卷 23, 期 3, 页码 639-650

出版社

SPRINGER
DOI: 10.1007/s10845-010-0415-2

关键词

Surface roughness; Support vector machines; AISI 304 machining

向作者/读者索取更多资源

In the present investigation, three different type of support vector machines (SVMs) tools such as least square SVM (LS-SVM), Spider SVM and SVM-KM and an artificial neural network (ANN) model were developed to estimate the surface roughness values of AISI 304 austenitic stainless steel in CNC turning operation. In the development of predictive models, turning parameters of cutting speed, feed rate and depth of cut were considered as model variables. For this purpose, a three-level full factorial design of experiments (DOE) method was used to collect surface roughness values. A feedforward neural network based on backpropagation algorithm was a multilayered architecture made up of 15 hidden neurons placed between input and output layers. The prediction results showed that the all used SVMs results were better than ANN with high correlations between the prediction and experimentally measured values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据