4.4 Article

Output Feedback Linearization Based Controller for a Helicopter-like Twin Rotor MIMO System

期刊

JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
卷 80, 期 1, 页码 181-190

出版社

SPRINGER
DOI: 10.1007/s10846-014-0129-3

关键词

Twin Rotor MIMO System (TRMS); Feedback linearization; Observer based control; Stability

向作者/读者索取更多资源

In this paper, an output feedback linearization based controller is designed to stabilize the Twin Rotor Multi-input Multi-output System (TRMS), and make its beam track accurately a reference signal, or reach desired positions in 2 DOF. Only yaw and pitch angles are considered available for measurement. An observer, to estimate the remaining states, is coupled with feedback linearization technique in a two-stage procedure. In the first stage, propellers thrusts are considered as virtual control inputs that lead to a TRMS canonical model for which feedback linearization is applied straightforwardly. In the second stage, the motors torques and actual control input voltages are computed, respectively, by solving algebraic equations and inverting motors models. In the proposed approach, the coupling effects are maintained in controller derivation and so there is no need to decouple the TRMS into horizontal and vertical subsystems, as usually done in the literature. Exponential stability of the closed loop is guaranteed by using the second method of Lyapunov. To show the performance and the effectiveness of the proposed controller, simulation results are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据