4.7 Article

Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments

期刊

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
卷 56, 期 7, 页码 695-708

出版社

WILEY-BLACKWELL
DOI: 10.1111/jipb.12179

关键词

Chlorophyll a fluorescence parameters; field conditions; intermated B73 x Mo17 recombinant inbred lines; JIP-test; maize (Zea mays L.); quantitative trait loci

资金

  1. Ministry of Science, Education and Sports, Republic of Croatia [073-0731674-1673, 073-0731674-0841, 073-0730463-0203]

向作者/读者索取更多资源

Chlorophyll fluorescence transient from initial to maximum fluorescence (P step) throughout two intermediate steps (J and I) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test parameters were analyzed in the intermated B73 x Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyll fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthesis under different field scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据