4.7 Article

High-throughput procedure for single pollen grain collection and polymerase chain reaction in plants

期刊

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
卷 50, 期 3, 页码 375-383

出版社

WILEY
DOI: 10.1111/j.1744-7909.2007.00624.x

关键词

DNA marker; high-throughput; polymerase chain reaction; single pollen grain

向作者/读者索取更多资源

Single pollen grain polymerase chain reaction (PCR) has succeeded in several species, however only limited numbers of pollen grains were involved due to difficulties in pollen isolation and lysis. This has limited its application in genetic analysis and mapping studies in plants. A high-throughput (HT) procedure for collecting and detecting genetic variation in a large number of individual pollen grains by PCR is reported. The HT procedure involved the collection of individual pollen grains by a pair of special forceps and the lysis of pollen grains in a heated alkali/detergent solution followed by neutralization with a tris-ethylenediamine tetraacetic acid (TE) buffer. These resulting template solutions yielded PCR reactions involving the 5S ribosomal RNA intergenic spacers, randomly amplified polymorphic DNA, and simple sequence repeats markers. Using this procedure, one person with experience could collect and process up to 288 single pollen grain PCR reactions per day. The method worked well on sugarcane, corn, Miscanthus spp., snap bean, sorghum, and tomato. The ability to collect and conduct PCR on individual pollen grains on a large scale offers a new approach to genetic analyses and mapping studies in an easily controllable environment with a considerable cost reduction. The method will also significantly benefit studies in species that are difficult subjects for classical genetic research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据