4.8 Article

Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines

期刊

APPLIED ENERGY
卷 154, 期 -, 页码 556-566

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.05.030

关键词

Liquid air energy storage; Pressurized oxy-coal combustion; Air separation unit; Process integration; Process simulation

资金

  1. UK EPSRC (through EPSRC Capital Investment on Energy Storage)
  2. University of Hull

向作者/读者索取更多资源

In this paper, the thermodynamic advantage of integrating liquid air power generation (LAPG) process and binary cycle waste heat recovery technology to a standalone pressurized oxy-coal combustion supercritical steam power generation cycle is investigated through modeling and simulation using Aspen Plus simulation software version 8.4. The study shows that the integration of LAPG process and the use of binary cycle heat engine which convert waste heat from compressor exhaust to electricity, in a standalone pressurized oxy-coal combustion supercritical steam power generation cycle improves the thermodynamic efficiency of the pressurized oxy-coal process. The analysis indicates that such integration can give about 12-15% increase in thermodynamic efficiency when compared with a standalone pressurized oxy-coal process with or without CO2 capture. It was also found that in a pressurized oxy-coal process, it is better to pump the liquid oxygen from the cryogenic ASU to a very high pressure prior to vapourization in the cryogenic ASU main heat exchanger and subsequently expand the gaseous oxygen to the required combustor pressure than either compressing the atmospheric gaseous oxygen produced from the cryogenic ASU directly to the combustor pressure or pumping the liquid oxygen to the combustor pressure prior to vapourization in the cryogenic ASU main heat exchanger. The power generated from the compressor heat in the flue gas purification, carbon capture and compression unit using binary cycle heat engine was also found to offset about 65% of the power consumed in the flue gas cleaning and compression process. The work presented here shows that there is a synergistic and thermodynamic advantage of utilizing the nitrogen-rich stream from the cryogenic ASU of an oxy-fuel power generation process for power generation instead of discarding it as a waste stream. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据