4.6 Review

The inorganic perspectives of neurotrophins and Alzheimer's disease

期刊

JOURNAL OF INORGANIC BIOCHEMISTRY
卷 111, 期 -, 页码 130-137

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2011.10.017

关键词

Nerve growth factor; Zinc; Copper; Alzheimer's disease; Peptide

资金

  1. MIUR [PRIN 2008 R23Z7K_001]

向作者/读者索取更多资源

The recent metal hypothesis represents an attempt of a new interpretation key of Alzheimer's disease (AD) to overcome the limits of amyloid cascade. Neurons need to maintain metal ions within a narrow range of concentrations to avoid a detrimental alteration of their homeostasis, guaranteed by a network of specific metal ion transporters and chaperones. Indeed, it is well known that transition metal ions take part in neuromodulation/neurotrasmission. In addition, they are prominent factors in the development and exacerbation of neurodegeneration. Neurotrophins are proteins involved in development, maintenance, survival and synaptic plasticity of central and peripheral nervous systems. A neurotrophin hypothesis of AD has been proposed, whereas the link between neurotrophic factor, the amyloid cascade and biometals has not been taken into account. As a matter of fact, there is a significant overlap between brain areas featured by metal ion dys-homeostasis, and those where the neurotrophins exert their biological activity. Metal ions can directly modulate their activities, through conformational changes, and/or indirectly by activating their downstream signaling in a neurotrophin-independent mode. The focus of this review is on the molecular aspects of Zn2+ and Cu2+ interactions with neurotrophins, with the aim to shed light on the intricate mechanisms involving metallostasis and proteostasis in AD. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据