4.5 Review

Hydrogen Storage in Metal-Organic Frameworks

出版社

SPRINGER
DOI: 10.1007/s10904-012-9779-4

关键词

Metal-organic frameworks; Organic linker; Pore volume; Surface area; Hydrogen storage; Hydrogen uptake; Molecular simulation

向作者/读者索取更多资源

Recent decades have witnessed the explosive emergence of metal organic frameworks (MOFs) as functional ultrahigh surface area materials. Categorized as an intriguing class of hybrid materials, MOFs exhibit infinite crystalline lattices with inorganic vertices and molecular-scale organic linkers. Fortunately, the large internal surface areas and overall pore volumes, adjustable pore sizes, ultralow densities, and tunable framework-adsorbate interaction by ligand functionalization and metal choice, enable MOFs to be promising materials for wide applications. In particular, these remarkable properties render MOFs potential hydrogen storage materials. By virtue of their exceptionally high surface areas, unparalleled tenability and structural diversity, MOFs have become a hotspot of research within the scientific community. This paper reviews the different methods used for the synthesis of MOFs, the relationship between structural features and hydrogen adsorption, the strategies for hydrogen uptake improvement as well as the molecular simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据