4.8 Article

Enhancing the efficiency of solar concentrators by controlled optical aberrations: Method and photovoltaic application

期刊

APPLIED ENERGY
卷 145, 期 -, 页码 211-222

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.01.085

关键词

Photovoltaic concentrator (CPV); Dense-array receiver; Numerical optimization; Optical design; Zernike polynomials

资金

  1. MIUR
  2. Fondazione CARISBO grant

向作者/读者索取更多资源

We present a general method, based on controlled static aberrations induced in the reflectors, to boost receiver performances in solar concentrators. Imaging mirrors coupled with dense arrays suffer from severe performance degradation since the solar irradiance distribution is bell-shaped: mismatch losses occur in particular when the cells are series connected. The method consists in computing static deformations of the reflecting surfaces that can produce, for an adopted concentration ratio, a light spot matching the receiver features better than conventional reflectors. The surfaces and the deformations have been analytically described employing the Zemike polynomials formalism. The concept here described can be applied to a variety of optical configurations and collecting areas. As an example, we extensively investigated a dense array photovoltaic concentrator, dimensioned for a nominal power of about 10 kWe. The. flat distribution of light we obtain can exploit the PV device cells close to their efficiency limit. A significant gain is thus obtained, with no need of secondary optics or complex dish segmentation and of special features in the receiver electrical scheme. In the design, based on seven 2.6 m mirrors, we addressed also non-optical aspects as the receiver and the supporting mechanics. Optical and mechanical tolerances are demonstrated not to exceed accurate, but conventional, industrial standards. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据