4.7 Article

Dominant-Negative Tumor Necrosis Factor Protects from Mycobacterium bovis Bacillus Calmette-Guerin (BCG) and Endotoxin-Induced Liver Injury without Compromising Host Immunity to BCG and Mycobacterium tuberculosis

期刊

JOURNAL OF INFECTIOUS DISEASES
卷 199, 期 7, 页码 1053-1063

出版社

OXFORD UNIV PRESS INC
DOI: 10.1086/597204

关键词

-

资金

  1. Swiss National Foundation for Scientific Research [3200A0-118196]
  2. Ligue Pulmonaire Genevoise
  3. Centre National de la Recherche Scientifique
  4. European Union [028190]

向作者/读者索取更多资源

Background. Tumor necrosis factor (TNF) is associated with the development of inflammatory pathologies. Antibodies and soluble TNF (solTNF) receptors that neutralize excessive TNF are effective therapies for inflammatory and autoimmune diseases. However, clinical use of TNF inhibitors is associated with an increased risk of infections. Methods. A novel dominant-negative (DN) strategy of selective TNF neutralization, consisting of blocking solTNF while sparing transmembrane TNF (tmTNF), was tested in mouse models of mycobacterial infection and acute liver inflammation. XENP1595, a DN-TNF biologic, was compared with etanercept, a TNF receptor 2 (TNFR2)-IgG1 Fc fusion protein that inhibits murine solTNF and tmTNF. Results. XENP1595 protected mice from acute liver inflammation induced by endotoxin challenge in Mycobacterium bovis bacillus Calmette-Guerin (BCG)-infected mice, but, in contrast to etanercept, it did not compromise host immunity to acute M. bovis BCG and Mycobacterium tuberculosis infections in terms of bacterial burden, granuloma formation, and innate immune responses. Conclusions. A selective inhibitor of solTNF efficiently protected mice from acute liver inflammation yet maintained immunity to mycobacterial infections. In contrast, nonselective inhibition of solTNF and tmTNF suppressed immunity to M. bovis BCG and M. tuberculosis. Therefore, selective inhibition of solTNF by DN-TNF biologics may represent a new therapeutic strategy for the treatment of inflammatory diseases without compromising host immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据