4.5 Review

DNA assembly techniques for next-generation combinatorial biosynthesis of natural products

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1007/s10295-013-1358-3

关键词

Combinatorial biosynthesis; DNA assembly; Genome mining; Synthetic biology

资金

  1. National Institutes of Health [GM077596]
  2. National Academies Keck Futures Initiative on Synthetic Biology
  3. Energy Biosciences Institute
  4. Department of Chemical and Biomolecular Engineering at the University of Illinois

向作者/读者索取更多资源

Natural product scaffolds remain important leads for pharmaceutical development. However, transforming a natural product into a drug entity often requires derivatization to enhance the compound's therapeutic properties. A powerful method by which to perform this derivatization is combinatorial biosynthesis, the manipulation of the genes in the corresponding pathway to divert synthesis towards novel derivatives. While these manipulations have traditionally been carried out via restriction digestion/ligation-based cloning, the shortcomings of such techniques limit their throughput and thus the scope of corresponding combinatorial biosynthesis experiments. In the burgeoning field of synthetic biology, the demand for facile DNA assembly techniques has promoted the development of a host of novel DNA assembly strategies. Here we describe the advantages of these recently developed tools for rapid, efficient synthesis of large DNA constructs. We also discuss their potential to facilitate the simultaneous assembly of complete libraries of natural product biosynthetic pathways, ushering in the next generation of combinatorial biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据