4.6 Review

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation

期刊

JOURNAL OF INDUSTRIAL ECOLOGY
卷 16, 期 -, 页码 S53-S72

出版社

WILEY
DOI: 10.1111/j.1530-9290.2012.00465.x

关键词

combustion emission factor; industrial ecology; life cycle assessment; meta-analysis; subcritical; supercritical

资金

  1. U.S. Department of Energy (DOE) [DE-AC36-08-GO28308]
  2. National Renewable Energy Laboratory (NREL)

向作者/读者索取更多资源

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO2-equivalent per kilowatt-hour (g CO2-eq/kWh) (interquartile range [IQR]= 8901,130 g CO2-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates (-53% in IQR magnitude) while maintaining a nearly constant central tendency (-2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据