4.6 Article

Identifying and predicting biological risks associated with manufactured nanoparticles in aquatic ecosystems

期刊

JOURNAL OF INDUSTRIAL ECOLOGY
卷 12, 期 3, 页码 286-296

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1530-9290.2008.00041.x

关键词

environmental risk assessment; genomics; industrial ecology; metabolomics; proteomics; toxicology

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Isaak Walton Killam Foundation
  3. Alberta Ingenuity Centre for Water Research

向作者/读者索取更多资源

Nanotechnology has great potential for revolutionizing the treatment of disease, optimizing manufacturing processes and consumer products, and remediating polluted environments. Increased use and disposal of products containing nanoparticles will inevitably result in their accumulation in aquatic ecosystems via direct input and runoff from contaminated soils. Aquatic organisms are particularly susceptible to pollutants due to their large, fragile respiratory epithelium. This potential toxicity can be exacerbated by common stressors, such as changes in water temperature, salinity, pH, and oxygen levels, and must be considered in environmental risk assessments. The unique properties of manufactured nanoparticles present serious problems for risk assessment strategies, and there is a concern in the regulatory community that standard toxicological methods may be inadequate to address these compounds. Our capacity to detect and quantify nanoparticles is extremely limited, especially in complex biological, soil, or water samples. The distinctive chemistry and physical structure of each nanomaterial will determine its bioavailability, and these parameters can be altered over time or with changes in water chemistry. The use of advanced analytical techniques, such as functional genomics, proteomics, and metabolomics, can provide a global assessment of the biological response to a novel chemical and will be important in determining the potential toxicity of nanoparticles. Industry should adopt a proactive approach to identifying potential risks to aquatic ecosystems so that the benefits of nanotechnology can be fully realized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据