4.8 Article

A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints

期刊

APPLIED ENERGY
卷 158, 期 -, 页码 310-331

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.08.054

关键词

Mixed integer linear programming; Unit commitment problem; Long term energy planning; Electricity markets; CO2 emissions; System marginal price

资金

  1. European Commission [ENER/FP7/296003]

向作者/读者索取更多资源

This work presents a generic mixed integer linear programming (MILP) model that integrates the unit commitment problem (UCP), i.e., daily energy planning with the long-term generation expansion planning (GEP) framework. Typical daily constraints at an hourly level such as start-up and shut-down related decisions (start-up type, minimum up and down time, synchronization, soak and desynchronization time constraints), ramping limits, system reserve requirements are combined with representative yearly constraints such as power capacity additions, power generation bounds of each unit, peak reserve requirements, and energy policy issues (renewables penetration limits, CO2 emissions cap and pricing). For modelling purposes, a representative day (24 h) of each month over a number of years has been employed in order to determine the optimal capacity additions, electricity market clearing prices, and daily operational planning of the studied power system. The model has been tested on an illustrative case study of the Greek power system. Our approach aims to provide useful insight into strategic and challenging decisions to be determined by investors and/or policy makers at a national and/or regional level by providing the optimal energy roadmap under real operating and design constraints. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据