4.7 Article

A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jiec.2009.08.005

关键词

Capacitive deionization; Specific capacitance; Faradaic current; Cyclic voltammetry; Chronoamperometry; Impedance spectroscopy

向作者/读者索取更多资源

A carbon electrode for capacitive deionization (CDI) was fabricated by casting a slurry that was a mixture of activated carbon powder (ACP) and poly(vinylidene fluoride) (PVdF) dissolved in di-methylacetamide (DMAc) on the current collector. Electrochemical properties and adsorption/desorption behaviors of the carbon electrodes prepared with different PVdF contents (9-18 wt%) were characterized using cyclic voltammetry, chronoamperometry, and impedance spectroscopy methods. From the SEM images, carbon powders were coated with the PVdF binder and bound together. Capacitances of carbon electrodes were estimated in the range of 75.3-69.6 F/g, decreasing in tandem with PVdF contents, but the decrease was not significant. From cyclic voltammetric and chronoamperometric measurements, the electrochemical behaviors of the carbon electrodes were dependent not only on the electric double layer capacitance, but also on Faradaic reactions. However, Faradaic currents resulted from an electrochemical redox reaction of carbon surface controlled by the polymer binder. These results indicate that the electrochemical reaction on the carbon surface was suppressed due to the PVdF binder. (C) 2010 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据