4.6 Article

Endothelial Cell-Derived Chemerin Promotes Dendritic Cell Transmigration

期刊

JOURNAL OF IMMUNOLOGY
卷 192, 期 5, 页码 2366-2373

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1302028

关键词

-

资金

  1. Italian Association for Cancer Research
  2. Italian Ministry of Health (Progetto Giovani Ricercatori)
  3. Ministero dell'Istruzione Universita e Ricerca
  4. Fondazione Berlucchi
  5. European Project Innovative Medicines Initiative Joint Undertaking [115142-2]
  6. Eurostars ChemExit [7306/8]

向作者/读者索取更多资源

ChemR23 is a chemotactic receptor expressed by APCs, such as dendritic cells, macrophages, and NK cells. Chemerin, the ChemR23 ligand, was detected by immunohistochemistry, to be associated with inflamed endothelial cells in autoimmune diseases, such as lupus erythematosus, psoriasis, and rheumatoid arthritis. This study reports that blood and lymphatic murine endothelial cells produce chemerin following retinoic acid stimulation. Conversely, proinflammatory cytokines, such as TNF-alpha, IFN-gamma, and LPS, or calcitriol, are not effective. Retinoic acid-stimulated endothelial cells promoted dendritic cell adhesion under shear stress conditions and transmigration in a ChemR23-dependent manner. Activated endothelial cells upregulated the expression of the atypical chemotactic receptor CCRL2/ACKR5, a nonsignaling receptor able to bind and present chemerin to ChemR23(+) dendritic cells. Accordingly, activated endothelial cells expressed chemerin on the plasma membrane and promoted in a more efficient manner chemerin-dependent transmigration of dendritic cells. Finally, chemerin stimulation of myeloid dendritic cells induced the high-affinity binding of VCAM-1/CD106 Fc chimeric protein and promoted VCAM-1-dependent arrest to immobilized ligands under shear stress conditions. In conclusion, this study reports that retinoic acid-activated endothelial cells can promote myeloid and plasmacytoid dendritic cell transmigration across endothelial cell monolayers through the endogenous production of chemerin, the upregulation of CCRL2, and the activation of dendritic cell beta(1) integrin affinity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据