4.6 Article

Acquisition of Complement Factor H Is Important for Pathogenesis of Streptococcus pyogenes Infections: Evidence from Bacterial In Vitro Survival and Human Genetic Association

期刊

JOURNAL OF IMMUNOLOGY
卷 188, 期 1, 页码 426-435

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1102545

关键词

-

资金

  1. Academy of Finland [128646]
  2. Helsinki University Central Hospital
  3. Sigrid Juselius Foundation

向作者/读者索取更多资源

Streptococcus pyogenes (or group A streptococcus [GAS]) is a major human pathogen causing infections, such as tonsillitis, erysipelas, and sepsis. Several GAS strains bind host complement regulator factor H (CFH) via its domain 7 and, thereby, evade complement attack and C3b-mediated opsonophagocytosis. Importance of CFH binding for survival of GAS has been poorly studied because removal of CFH from plasma or blood causes vigorous complement activation, and specific inhibitors of the interaction have not been available. In this study, we found that activation of human complement by different GAS strains (n = 38) correlated negatively with binding of CFH via its domains 5-7. The importance of acquisition of host CFH for survival of GAS in vitro was studied next by blocking the binding with recombinant CFH5-7 lacking the regulatory domains 1-4. Using this fragment in full human blood resulted in death or radically reduced multiplication of all of the studied CFH-binding GAS strains. To study the importance of CFH binding in vivo (i.e., for pathogenesis of streptococcal infections), we used our recent finding that GAS binding to CFH is diminished in vitro by polymorphism 402H, which is also associated with age-related macular degeneration. We showed that allele 402H is suggested to be associated with protection from erysipelas (n = 278) and streptococcal tonsillitis (n = 209) compared with controls (n = 455) (p < 0.05). Taken together, the bacterial in vitro survival data and human genetic association revealed that binding of CFH is important for pathogenesis of GAS infections and suggested that inhibition of CFH binding can be a novel therapeutic approach in GAS infections. The Journal of Immunology, 2012, 188: 426-435.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据