4.6 Article

Dysregulation of Inflammatory Responses by Chronic Circadian Disruption

期刊

JOURNAL OF IMMUNOLOGY
卷 185, 期 10, 页码 5796-5805

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1001026

关键词

-

资金

  1. National Institutes of Health [5U54NS-060659-020001, P20CA132389, GM086683]
  2. National Institutes of Health/National Center for Research Resources/Research Centers in Minority Institutions [G12-RR03034]
  3. National Institutes of Health/National Center on Minority Health and Health Disparities [5S21MD000101-09]
  4. Georgia Research Alliance
  5. National Science Foundation Center for Behavioral Neuroscience

向作者/读者索取更多资源

Circadian rhythms modulate nearly every mammalian physiological process. Chronic disruption of circadian timing in shift work or during chronic jet lag in animal models leads to a higher risk of several pathologies. Many of these conditions in both shift workers and experimental models share the common risk factor of inflammation. In this study, we show that experimentally induced circadian disruption altered innate immune responses. Endotoxemic shock induced by LPS was magnified, leading to hypothermia and death after four consecutive weekly 6-h phase advances of the light/dark schedule, with 89% mortality compared with 21% in unshifted control mice. This may be due to a heightened release of proinflammatory cytokines in response to LPS treatment in shifted animals. Isolated peritoneal macrophages harvested from shifted mice exhibited a similarly heightened response to LPS in vitro, indicating that these cells are a target for jet lag. Sleep deprivation and stress are known to alter immune function and are potential mediators of the effects we describe. However, polysomnographic recording in mice exposed to the shifting schedule revealed no sleep loss, and stress measures were not altered in shifted mice. In contrast, we observed altered or abolished rhythms in the expression of clock genes in the central clock, liver, thymus, and peritoneal macrophages in mice after chronic jet lag. We conclude that circadian disruption, but not sleep loss or stress, are associated with jet lag-related dysregulation of the innate immune system. Such immune changes might be a common mechanism for the myriad negative health effects of shift work. The Journal of Immunology, 2010, 185: 5796-5805.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据