4.6 Article

Stromal Interaction Molecules 1 and 2 Are Key Regulators of Autoreactive T Cell Activation in Murine Autoimmune Central Nervous System Inflammation

期刊

JOURNAL OF IMMUNOLOGY
卷 184, 期 3, 页码 1536-1542

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.0902161

关键词

-

资金

  1. Rudolf Virchow Center
  2. Deutsche Forschungsgemeinschaft [487, 688, 581]
  3. German Excellence Initiative

向作者/读者索取更多资源

Calcium (Ca2+) signaling in T lymphocytes is essential for a variety of functions, including the regulation of differentiation, gene transcription, and effector functions. A major Ca2+ entry pathway in nonexcitable cells, including T cells, is store-operated Ca2+ entry (SOCE), wherein depletion of intracellular Ca2+ stores upon receptor stimulation causes subsequent influx of extracellular Ca2+ across the plasma membrane. Stromal interaction molecule (STIM) 1 is the Ca2+ sensor in the endoplasmic reticulum, which controls this process, whereas the other STIM isoform, STIM2, coregulates SOCE. Although the contribution of STIM molecules and SOCE to T lymphocyte function is well studied in vitro, their significance for immune processes in vivo has remained largely elusive. In this study, we studied T cell function in mice lacking STIM1 or STIM2 in a model of myelin-oligodendrocyte glycoprotein (MOG(35-55))-induced experimental autoimmune encephalomyelitis (EAE). We found that STIM1 deficiency significantly impaired the generation of neuroantigen-specific T cell responses in vivo with reduced Th1/Th17 responses, resulting in complete protection from EAE. Mice lacking STIM2 developed EAE, but the disease course was ameliorated. This was associated with a reduced clinical peak of disease. Deficiency of STIM2 was associated with an overall reduced proliferative capacity of lymphocytes and a reduction of IFN-gamma/IL-17 production by neuroantigen-specific T cells. Neither STIM1 nor STIM2 deficiency altered the phenotype or function of APCs. These findings reveal a crucial role of STIM-dependent pathways for T cell function and activation under autoimmune inflammatory conditions, establishing them as attractive new molecular therapeutic targets for the treatment of inflammatory and autoimmune disorders. The Journal of Immunology, 2010, 184: 1536-1542.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据